

TED UNIVERSITY

CMPE 492 SENIOR PROJECT II

SEARCH AND RESCUE OPERATION PORTAL (SAROP)

Test Plan Report

Project Name: SAROP (Search and Rescue Operation Portal)

Project Url: sarop.tech

Team Members:

• Arda Gök

• Saliha Nursu Baltacı

• Ceren Özdoğan

• Mert Çıkla

Name of the supervisor: Emin Kuğu

Names of the juries: Tolga Kurtuluş Çapın - Venera Adanova

1. Introduction

This document is designed to provide a comprehensive outline of our testing strategy for both

the front-end, back-end, mobile application components of the SAROP system. As SAROP aims

to be a pivotal tool in improving the efficiency and effectiveness of search and rescue operations,

it is important that the portal operates in a great manner under various conditions and meets all

specified functional requirements.

The purpose of this document is to detail the scope, objectives, and methods for testing the

SAROP application. It will cover various aspects including user authentication, integration,

security, error handling, and user experience. This testing will ensure that SAROP not only meets

the highest standards of operational excellence but also provides a user-friendly interface that

can be relied upon in critical situations. Our test plans aim to challenge the system’s

functionalities, uncover potential issues, and guarantee that all user interactions are intuitive and

robust.

2. Scope

2.1 Mobile:

2.1.1 In Scope:

1. User Authentication and Registration:

• Check that the screens for user registration and login work properly.

• Experiment with making a new user and login in using a working username

and password.

• Make sure the appropriate error messages for unsuccessful login attempts are

shown.

2. Integration Testing:

• Utilize the Read function offered by the API.

• Verify that every endpoint reacts to queries in a suitable manner.

• Verify that the API is handling authorization and authentication procedures

correctly.

3. Security Testing:

• Verify data security while registering and logging in as users.

• Confirm that authorization and authentication procedures are applied

securely.

• Ensure that in the event of an illegal access attempt, the proper error messages

are shown.

4. Error Handling:

• Verify that the program correctly handles incorrect requests, such as those

resulting from failed login attempts or missing fields.

• Verify that the API's failures are being handled appropriately.

5. User Experience:

• Confirm that the application has a user-friendly interface.

• Ensure all screens and functionalities work smoothly.

• Verify that users can easily navigate and perform desired actions.

6. Interactive Map Features:

• Testing map display.

• Evaluating map layer selection and visualization capabilities.

2.1.2 Out Scope:

1. Performance Testing:

• Assess the processing speed and reaction times of the application.

• To make sure the application functions properly, test it in various network

scenarios.

2. Battery and Resource Usage:

• Verify that the app efficiently controls device resources (memory, CPU,

network consumption, etc.) and battery life.

3. Different Devices and Screen Sizes:

• Verify that the app functions properly across a range of mobile devices and

screen sizes.

• Make that the UI adjusts appropriately for varying screen resolutions.

4. Load Testing:

• This test plan does not involve detailed load testing to replicate high traffic

scenarios.

2.2 Backend:

2.2.1 In Scope:

1. Functional Testing:

• Verify that all the CRUD(Create/Read/Update/Delete) operations work

correctly for any role.

• Verify that all the endpoints return queries in a correct way.

2. Security Testing:

• Validate that the API endpoints handle authentication and authorization

properly.

3. Error Handling:

• Verify that the API returns appropriate error messages for invalid requests,

such as missing required fields or incorrect data types.

4. Integration Testing:

• Verify that map endpoints work correctly with GeoServer services.

• Verify that application loads data from related search and rescue team

endpoints.

2.2.2 Out Scope:

1. Performance Testing:

• Evaluating the API's response time and handling of concurrent requests is

not included in this test plan.

2. Compatibility Testing:

• Testing the API's compatibility across different platforms, devices, or

browsers is not covered in this test plan.

3. Regression Testing:

• Comprehensive regression testing to ensure new changes do not impact

existing functionalities is not part of this test plan.

4. Load Testing:

• Detailed load testing to simulate heavy traffic conditions is not included

in this test plan.

2.3 Frontend:

2.3.1 In Scope:

The frontend testing scope for SAROP includes a thorough examination of the

following components and functionalities:

1. User Authentication and Authorization:

• Testing user login, logout, and password management functionalities.

• Validating role-based access control (Admin vs. User) across all modules.

2. Interactive Map Features:

• Testing map display, navigation controls, marker placement, and path

drawing functionalities.

• Evaluating map layer selection and visualization capabilities.

3. Operation Management:

• Validating operation viewing, creation, update, and assignment

functionalities.

• Testing real-time updates and notifications for operational activities.

4. User Interfaces:

• Assessing front-end responsiveness, clarity, and intuitiveness across

different devices and screen sizes.

• Verifying UI adherence to design specifications and user experience

guidelines.

2.3.2 Out Scope:

Certain aspects are considered out of scope for SAROP's frontend testing,

including:

• Backend services, API interactions, and database operations (covered

separately in backend testing).

• Performance, load, and stress testing of backend systems.

• Hardware-specific testing (focused solely on front-end software

components).

3. Quality Objective

3.1 Mobile:

3.1.1 Accuracy:

• Verify that user credentials are correctly captured and authenticated on the

login and registration screens. Make sure the error messages you receive after

trying to log in are clear and concise.

3.1.2 Robustness of Integration Testing:

• Verify that the API's Read function operates accurately and consistently

across all endpoints.

• Verify that the permission and authentication processes are handled efficiently

by the API and that it answers questions in a suitable manner.

3.1.3 Assurance of Security:

• Make sure that during the registration and login processes, user data is

communicated and kept securely.

• To avoid unwanted access, make sure that permission and authentication

processes are carried out securely.

• Verify that when unauthorized access attempts occur, the appropriate error

messages are shown.

3.1.4 Efficiency in Handling Errors:

• Verify that the program correctly responds to erroneous requests—like

unsuccessful login attempts or missing fields—without crashing or

jeopardizing user information.

• Make sure the API responds to errors meaningfully and can handle failures

appropriately.

3.1.5 User Satisfaction with Experience:

• Evaluate the user interface's usability and intuitiveness.

• Verify sure there are no hiccups or delays in the operation of any screens or

features.

• Check that users can easily browse the program and carry out the desired

actions without experiencing any confusion.

3.1.6 Assessment of Interactive Map Functionality:

• Verify that the map renders accurately and quickly by testing its display.

• Examine the map layers' selection and visualization capabilities to make sure

they are accurate and responsive.

3.2 Backend:

3.2.1 Functional Correctness:

• Ensure that all the endpoints operate correctly.

• Verify that the endpoint returns the correct data when queried.

3.2.2 Security and Authorization:

• Confirm that the API endpoints handle authentication and authorization properly,

allowing only authorized users to access and modify team location data.

3.2.3 Error Handling:

• Validate that the API returns appropriate and informative error messages for

invalid requests, such as missing required fields or incorrect data types.

• Ensure that the API gracefully handles edge cases and unexpected inputs without

crashing or exposing sensitive information.

3.2.4 Reliability:

• Verify that the API can handle a reasonable number of concurrent requests

without degradation in performance or stability.

• Ensure that the API can recover from failures and maintain data integrity in the

event of system or network disruptions.

3.2.5 Usability:

• Confirm that the API response format and structure are intuitive and easy to

consume for client applications.

• Ensure that the API documentation is comprehensive and provides clear guidance

on how to interact with the endpoints.

3.2.6 Maintainability:

• Verify that the API code follows best practices and industry standards, making it

easy to understand, extend, and maintain in the future.

• Ensure that the API is designed with modularity and scalability in mind, allowing

for easy integration with other system components.

3.3 Frontend:

The overarching quality objectives for SAROP's frontend testing are aligned with

ensuring:

3.3.1 Functional Validation:

• All front-end features and functionalities adhere to specified requirements

and acceptance criteria.

• Smooth navigation and seamless user interactions across the SAROP

application.

3.3.2 Usability and User Experience:

• Frontend interfaces are assessed for clarity, consistency, and ease of use.

• Identification and resolution of usability issues to enhance overall user

experience.

3.3.3 Defect Identification and Resolution:

• Thorough documentation and prioritization of front-end defects based on

severity and impact.

• Collaboration with development teams to promptly address and resolve

identified issues.

 4. Roles and Responsibilities

The success of SAROP's frontend testing relies on the collaborative efforts of the

following team members:

Mert Çıkla: Backend Tester

• Create API endpoint documentation for backend tests

• Execute manual and automated tests to verify backend functionalities and user

interactions.

• Document test results, track defects, and collaborate with developers for issue

resolution.

Ceren Özdoğan And Saliha Nursu Baltacı: Frontend Tester

• Testing API endpoints by calling each endpoint on frontend.

• Execute manual and automated tests to verify frontend functionalities and user

interactions.

• Testing map functionalities such as scaling, zoom in/out, drawing polygon, saving

note.

PERSON TASK

MERT ÇIKLA Applying Backend Tests

CEREN ÖZDOĞAN Applying Frontend User Screen Test

SALİHA NURSU

BALTACI

Applying Frontend Map Screen Test

ARDA GÖK Applying Mobile Application Tests

• Document test results, track defects, and collaborate with developers for issue

resolution.

Arda Gök: Mobile Tester

• Testing login/register endpoints on mobile

• Execute manual and automated tests to verify mobile functionalities and user

interactions.

• Testing map functionalities such as scaling, zoom in/out, drawing polygon, saving

note.

• Document test results, track defects, and collaborate with developers for issue

resolution.

5. Test Methodology

In this section, we discuss our detailed testing plan used to check the performance and

effectiveness of our mobile application and web application in this project. Our testing is

organized into different levels: Unit Testing, Integration Testing, System Testing, and User

Acceptance Testing. Each level focuses on specific parts or interactions within the system.

Unit Testing analyzes each operation in the application, both in the frontend and backend, to

make sure each part works correctly by itself.

Integration Testing ensures that services of the application work well together. For the mobile

and frontend part, this includes checking how frontend components interact with backend APIs.

For the backend, it involves testing how different server endpoints and relation with GeoServer

communicate.

System Testing checks the entire system's functionality and performance to make sure it works

as expected.

User Acceptance Testing is the testing step, where we check if the application meets the needs

and expectations of the users.

To determine if our testing is complete, we look at several factors, such as whether all planned

test cases have been carried out, whether any serious problems have been solved, and whether

the application meets the quality standards we set.

5.1 Mobile

5.1.1 Test Levels:

5.1.1.1 Unit Testing:

Validate each mobile frontend component's functionality in isolation, such as login,

registration, map viewing, and dropdown menus.

• Verify that every component responds to user interactions appropriately and

performs as anticipated.

• Recognize and fix any testing-related front-end-specific problems.

5.1.1.2 Integration Testing:

1. Authentication and Authorization:

• Verify that user authentication in mobile applications is handled effectively

by the API endpoints.

 2. Security Checks:

• Test the mobile application for potential security vulnerabilities.

3. Test the Other Integration:

• Validate that map viewing functionality retrieves and displays data from the

backend API accurately. Verify interactions and integrations between mobile

frontend modules/components and backend APIs.

• Test data flow between the mobile frontend and backend systems, ensuring

seamless communication and proper handling of data.

• Test dropdown menus' functionality to select options and fetch data from the

backend as required.

5.1.1.3 System Testing:

1. Error Handling:

• Validate that the mobile app returns appropriate and informative error

messages for invalid API fetch’s, such as missing required fields or incorrect

data types.

• Ensure that the mobile application gracefully handles edge cases and

unexpected inputs without crashing or exposing sensitive information.

2. Usability:

• Test the entire user flow, including login, registration, map viewing, and data

retrieval from backend via dropdown menus.

• Perform end-to-end validation of SAROP's mobile frontend to ensure

seamless functionality and usability.

5.1.1.4 User Acceptance Testing:

Involve such as stakeholders end users to verify that the mobile frontend satisfies user

needs and acceptance standards.

• Gather feedback on the general operation and design of the mobile

application's user interface.

• Confirm that stakeholders are satisfied with the mobile application's

functionality and suitability for their needs.

• To make sure that the finished product lives up to user expectations, address

any issues or difficulties that come up during user acceptability testing.

5.1.2 Test Completeness:

 5.1.2.1 User Authentication and Registration Testing:

• Check that the login and registration screens work properly.

• Verify that newly registered users are logged in using legitimate credentials.

• Make sure that when a login attempt fails, error messages are displayed

correctly.

• Verify the security of the data while logging in and registering.

 5.1.2.2 Integration Testing:

• Make use of the API Read method for every endpoint.

• Confirm that authorization and authentication are handled correctly.

• Examine how the front-end and back-end systems interact.

• Verify that dropdown menus correctly retrieve data from the backend.

 5.1.2.3 Security Testing:

• Verify data security when logging in and registering.

• Verify that authorization and authentication are handled securely.

• Check that the right error messages are displayed in response to unauthorized

access attempts.

 5.1.2.4 Error Handling:

• Assure proper handling of erroneous requests, such as unsuccessful login

attempts.

• Check how the API handles failures and errors.

 5.1.2.5 User Experience Testing:

• Assess the usability of the user interface.

• Verify that all screens and functionalities operate without a hitch.

• Guarantee simple operation and navigation.

 5.1.2.6 Interactive Map Features Testing:

• Verify that the map renders quickly and accurately.

• Examine the map layers' selecting and visualization capabilities.

 5.1.2.7 Unit Testing:

• Examine each front-end component's functionality separately.

• Ensure that user interactions receive suitable answers.

 5.1.2.8 System Testing:

• Verify error messages pertaining to incorrect API fetches.

• Examine the entire user experience, including registration, login, and map

browsing.

 5.1.2.9 User Acceptance Testing:

• Consult stakeholders to confirm that users are satisfied.

• Get input on the general usability and design of the interface.

5.2 Backend

5.2.1 Test Levels:

 5.2.1.1 Unit Testing:

1. User Registration:

• Verify that the /auth/register endpoint correctly processes the input data

(name, email, password) and creates a new user account.

• Validate that the generated access_token and refresh_token are correctly

formatted and contain the expected user information.

2. User Login:

• Ensure that the /auth/login endpoint correctly authenticates users with valid

credentials (email and password).

• Test the endpoint with both valid and invalid credentials and verify that the

API returns the expected access_token and refresh_token (for valid

credentials) or appropriate error messages (for invalid credentials).

3. Admin Login:

• Verify that the /auth/login endpoint correctly authenticates administrators

with valid credentials (email and password).

• Test the endpoint with both valid and invalid admin credentials and ensure

that the API returns the expected access_token and refresh_token (for valid

credentials) or appropriate error messages (for invalid credentials).

4. Creation of All the Entities

• Verify that entity create endpoints works correctly based on the authenticated

role. Test it with the credentials of users and see whether the function operates

correctly or returns an error message.

• Verify that creation of the entities works correctly with one-to-one, many-to-

one, many-to-many relationships.

• Test the endpoint with missing arguments in request body to see how it

operates.

5. Update of All the Entities

• Verify that entity update endpoints works correctly based on the authenticated

role. Test it with the credentials of users and see whether the function operates

correctly or returns an error message.

• Verify that edit of the entities works correctly with one-to-one, many-to-one,

many-to-many relationships.

• Test the endpoint with missing arguments in request body to see how it

operates.

6. Deletion of All the Entities

• Verify that entity delete endpoints works correctly based on the authenticated

role. Test it with the credentials of users and see whether the function operates

correctly or returns an error message.

• Verify that deletion of the entities works correctly with one-to-one, many-to-

one, many-to-many relationships.

 5.2.1.2 Integration Testing:

1. Authentication and Authorization:

• Ensure that the API endpoints correctly handle authentication and

authorization, allowing only authorized users to access and perform actions.

• Verify that the access_token and refresh_token are properly validated and

used for subsequent requests.

2. Security Checks:

• Test the API endpoints for potential security vulnerabilities.

• Ensure that the API properly sanitizes and validates all input data to prevent

such vulnerabilities.

3. GeoServer Post and Delete Operations:

• Ensure that API creates a relationship with GeoServer API and correctly post

and delete the map from the server.

4. Loading Data from Related Endpoints on Launch:

• Ensure that the API creates a relationship with related endpoints on launch of

application and gets data from these APIs.

• Ensure that the application operates in this job in an applicable performance.

 5.2.1.3 System Testing:

1) Error Handling:

• Validate that the API returns appropriate and informative error messages for

invalid requests, such as missing required fields or incorrect data types.

• Ensure that the API gracefully handles edge cases and unexpected inputs

without crashing or exposing sensitive information.

2) Usability:

• Verify that the API response format and structure are intuitive and easy to

consume for client applications.

• Ensure that the API documentation is comprehensive and provides clear

guidance on how to interact with the endpoints.

 5.2.1.4 User Acceptance Testing:

3) Functional Correctness:

• Ensure that all the endpoints work correctly with their acceptance criteria such

as creation of entity, update of entity, deletion of entity in a correct way as

well as operating in relationship side too by ensuring data consistency.

• Confirm that return values of all the endpoints are correct and valid.

4) Security and Authorization:

• Verify that the API endpoints handle authentication and authorization

properly, allowing only authorized users to access and perform actions.

5) Reliability:

• Validate that the API can handle a reasonable number of concurrent requests

without degradation in performance or stability.

• Ensure that the API can recover from failures and maintain data integrity in

the event of system or network disruptions.

5.2.2 Test Completeness:

 5.1.2.1 Unit Testing:

• Ensure that the individual components of the endpoints function as expected,

including input validation, operating correctly, and returning the correct data.

• Validate edge cases and error handling at the unit level.

 5.1.2.2 Integration Testing:

• Verify the integration of the authentication-related endpoints with other system

components, such as the user management and authorization modules.

• Confirm that the access_token and refresh_token are properly validated and used for

subsequent requests.

• Confirm that the relation and integration with other services works in a specified time.

 5.1.2.3 System Testing:

• Evaluate the overall system behavior, including the handling of concurrent requests,

error recovery, and data integrity.

• Ensure that the API meets the expected performance and reliability requirements.

 5.1.2.4 User Acceptance Testing:

• Confirm that the API endpoints meet the functional, security, and usability

requirements from the end-user's perspective.

• Validate the API's ability to handle real-world usage scenarios and edge cases.

5.3 Frontend

5.3.1 Test Levels:

 5.3.1.1 Unit Testing:

• Objective: To test individual components of the frontend in isolation to ensure that

each part functions correctly by itself.

• Approach: Developers write unit tests for each component, such as buttons, input

fields, and visual elements, to check their behavior under various scenarios. Tools

like Jest or Mocha can be used for this purpose.

• Coverage: Focus on testing the logic of JavaScript functions, the rendering of

components without external dependencies, and the correct application of styles.

 5.3.1.2 Integration Testing:

• Objective: To verify that different components of the frontend interact correctly with

each other and with backend APIs.

• Approach: Conduct tests that simulate user interaction with the application that

involves multiple components working together. This includes testing form

submissions, navigation between pages, and any client-side logic that integrates

different modules.

• Coverage: Ensure that API calls fetch and post data accurately, components update

dynamically in response to user inputs, and transitions between application states are

smooth.

 5.3.1.3 System Testing:

• Objective: To validate the complete and integrated software product to ensure it

meets the defined requirements.

• Approach: Execute comprehensive tests covering the full functionality of the

frontend as it interacts with the backend and other systems. This level checks the

complete flow of the application from start to finish.

• Coverage: Test the application in environments that mimic real-world operating

conditions. Assess the overall system behavior, including loading times, data

accuracy, and responsiveness.

 5.3.1.5 Acceptance Testing:

• Objective: To confirm that the front end meets the business requirements and is ready

for deployment and use by end-users.

• Approach: This testing can include User Acceptance Testing (UAT), where actual

users test the system in a production-like environment to validate the user experience

against their expectations and needs.

• Coverage: Focus on user-driven scenarios and use cases that reflect real-life usage

of the application. Evaluate the application's usability, content, and overall

performance to ensure it aligns with user expectations and business objectives.

 5.3.1.6 Usability Testing:

• Objective: To determine if the application is intuitive, easy to use, and configured

logically for end-users.

• Approach: Sessions where testers or actual users perform typical tasks using the

application. Observations and feedback are gathered to identify areas of confusion or

difficulty.

• Coverage: Key aspects like navigation flow, clarity of content, interaction simplicity,

and visual design are evaluated. This testing helps in refining the user interface for

better user satisfaction and reduced error rates.

 5.3.1.6 Regression Testing:

• Objective: To ensure that new code changes have not adversely affected existing

functionality of the application.

• Approach: Automated tests are run every time there's a change in the codebase to

catch any regressions early in the development cycle.

• Coverage: Includes all critical paths and functionalities that might be affected by

recent changes or updates to ensure that previous functionalities still perform as

expected.

Each of these test levels plays a crucial role in validating different aspects of the frontend,

ensuring the software is robust, user-friendly, and ready for deployment. This structured

approach helps in identifying issues at early stages and guarantees that the application meets

all performance, usability, and reliability requirements.

5.3.2 Test Completeness:

Criteria for determining test completeness for SAROP's frontend testing include:

• Execution of all planned test cases covering functional and non-functional

requirements.

• Resolution of critical and major defects identified during testing.

• Validation against acceptance criteria and achievement of predefined quality metrics.

6. Project Tasks, Estimations, and Schedule

TEST PERFORMED

MEMBER

PASSED/FAILED/FUTURE

TEST
BACKEND- Authorization

tests(Register/Login)

Mert Çıkla PASSED

BACKEND- Team Location

endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Team

Endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Map

Endpoints(Create/Read/Delete)

Mert Çıkla PASSED

BACKEND- Geoserver Post/Delete Relation Mert Çıkla PASSED

BACKEND- BACKEND- Polygon

Endpoints(Create/Read/Delete)

Mert Çıkla PASSED

BACKEND- Note

Endpoints(Create/Read/Delete)

Mert Çıkla PASSED

BACKEND- Operation

Endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Category

Endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Exception Handling – Crashing

case when there is an error

Mert Çıkla PASSED

BACKEND -Exception Handling – Error

messages

Mert Çıkla Future Test

BACKEND- Loading Data From API Mert Çıkla PASSED

BACKEND- Performance test while loading

data from API

Mert Çıkla FAILED

BACKEND- Performance test for the relation

with Geoserver API

Mert Çıkla PASSED

MOBILE- User Authentication and

Registration Arda Gök Passed

MOBILE- Registration screen works properly Arda Gök Passed

MOBILE Login with valid credentials Arda Gök Passed

MOBILE- Display of appropriate error

messages Arda Gök Passed

MOBILE - Data security during

registration/login Arda Gök Passed

MOBILE- Utilization of API Read function Arda Gök Passed

MOBILE- Proper handling of authentication Arda Gök Passed

MOBILE- Interaction between frontend and

backend Arda Gök Passed

MOBILE- Accuracy of dropdown menu data

fetching Arda Gök Passed

MOBILE- Data security during

registration/login Arda Gök Passed

MOBILE- Display of appropriate error

messages Arda Gök Passed

MOBILE- Proper response to incorrect

requests Arda Gök Passed

MOBILE- API's response to errors and

failures Arda Gök Passed

MOBILE- Usability of the user interface Arda Gök Passed

MOBILE- Smooth operation of all features Arda Gök FAILED

MOBILE- Easy navigation and execution of

actions Arda Gök Passed

MOBILE- Accurate and quick map rendering Arda Gök FAILED(NOT QUICK)

MOBILE- Selection and visualization

capabilities Arda Gök Passed

MOBILE- Functionality of each frontend

component Arda Gök Passed

MOBILE- Response to user interactions Arda Gök Passed

MOBILE- Validation of error messages Arda Gök Passed

MOBILE- End-to-end user flow validation Arda Gök Passed

FRONTEND- User Authentication and

Registration Ceren Özdoğan Passed

FRONTEND- Role-Based Access Control

Validation Ceren Özdoğan Passed

FRONTEND- Interactive Map Display and

Controls Nursu Baltacı Passed

FRONTEND- Map Marker Placement and

Path Drawing Nursu Baltacı Future Test

FRONTEND- Operation Management

Functions Nursu Baltacı Passed

FRONTEND- Real-Time Updates and

Notifications Ceren Özdoğan Passed

FRONTEND- Cross-Browser Compatibility Ceren Özdoğan

Passed - Tested on Chrome,

Firefox, Safari

FRONTEND- Responsive Design on Various

Devices Ceren Özdoğan

Passed- Includes tests on

desktops,tablets,smartphones

FRONTEND- User Interface Consistency Ceren Özdoğan Passed

FRONTEND- Accessibility Compliance

Testing Ceren Özdoğan Future Test

FRONTEND- Security Measures for User

Data Nursu Baltacı Passed

FRONTEND- Error Message Handling Nursu Baltacı Passed

FRONTEND- Session Management Testing Nursu Baltacı Passed

FRONTEND-Load Times and Performance

Optimization Nursu Baltacı

Failed - Needs optimization for

faster load times

FRONTEND-Usability Testing Ceren Özdoğan

Passed- Scheduled to gather user

feedback on interface usability

7. Resource & Environment Needs

7.1 Testing Tools

7.1.1 Backend:

1. Postman:

• Postman is a popular API testing tool that will be used to execute the test

cases for the endpoints.

• Postman allows creating and running API requests, validating responses,

and automating the testing process.

2. Wiremock:

• Wiremock is a tool for stubbing and mocking HTTP services, which will

be used to simulate the backend API endpoints.

• Wiremock allows defining the expected API responses and behaviors,

enabling isolated testing of the frontend application.

7.1.2 Mobile:

1. Emulator:

In Android studio we have emulator’s that can exactly same with the mobile phone.

And ı try the whole test with Android studio’s emulator.

• Pixel 2 API

• Pixel 3 API

2. Local:

The other test area is my local computer and my phone. Xiaomi Redmi Note 8 pro.

7.2 Testing Environment

TESTING

ENVIRONMENT

COMPUTER RAM CPU MEMORY

Arda Gök Hp Pavilion 16 GB Amd Ryzen 4800H 2.90

GHz

256 GB SSD/1 TB

HDD

Mert Çıkla MSI Bravo 15

B5DD

16 GB AMD Ryzen 5800H 3.2

GHz

1 TB SSD

Saliha Nursu

Baltacı

Casper

Excalibur G770

16 GB Intel Core I5 2.5 GHz 500 GB SSD/1 TB

HDD

Ceren Özdoğan HP l15s-fq2xxx 8 GB Intel Core i5 2.5 GHz 256 GB SSD/1 TB

HDD

7.2.1 Web Application:

7.2.1.1 Development Environment

• The testing will be conducted in a local development environment, where the

front-end application and the Wiremock server are running.

• This environment will be used for initial unit and integration testing of the front-

end components interacting with the mocked API endpoints.

7.2.2 Staging Environment

• The front-end application will be deployed to a staging environment, where it will

be tested against the actual backend API endpoints. This is a future plan for the

time project is ready for related search and rescue teams’ use.

• This environment will be used for end-to-end testing, ensuring the frontend

application integrates correctly with the live API.

7.2.3 Mobile Application:

8. Conclusion

This testing document lays out our careful plan to check and improve the SAROP system

thoroughly. We've applied for a series of detailed tests. Our goal is to spot any errors and fix

them, ensuring that SAROP works better than ever before. This testing isn't just a routine check;

it's a crucial step toward providing a tool that goes beyond what’s expected by everyone who

depends on it for search and rescue missions.

Moving forward, we’ll use what we learn from these tests to make SAROP even stronger and

more reliable. We’re really focused on making improvements continuously and adapting to new

feedback to make sure SAROP is both easy to use and effective. The success of these tests is key

to our commitment to help save lives through a dependable and efficient SAROP system. We're

dedicated to making sure that SAROP stands out as a valuable resource in critical rescue

operations all over the world.

This conclusion aims to connect more personally with the reader, emphasizing the ongoing

commitment to enhancement and the direct impact of these efforts on real-world rescue

operations.

Testing

Environment Description

Development

Environment

Testing the mobile application in a local development environment.

Tests are carried out using Android Studio's emulators. In this

environment, tests are carried out on Pixel 2 API and Pixel 3 API

emulators.

Staging Environment

One of the testing areas is my local computer and my Xiaomi Redmi

Note 8 Pro phone. In this environment, the application is tested on a

real device.

