

TED UNIVERSITY

CMPE492 – Senior Project II

Search and Rescue Operation Portal(SAROP)

Final Report

 Project Name: SAROP (Search and Rescue Operation Portal)

 Project Url: sarop.tech

Team Members:

• Arda Gök (10016049214)

• Saliha Nursu Baltacı (48004738666)

• Ceren Özdoğan (13606132136)

• Mert Çıkla (33617203274)

Name of the supervisor: Emin Kuğu

Names of the juries: Tolga Kurtuluş Çapın - Venera Adanova

1

TABLE OF CONTENTS

1. Introduction .. 2

1.1 Description .. 3

1.2 Constraints .. 3

1.3 Professional and Ethical Issues .. 4

2. System Requirements .. 5

2.1 Features of Project ... 5

3. Architecture .. 7

3.1 Architecture in Backend .. 7

3.2 Architecture and design in Mobile .. 10

3.3Architecture and design on Frontend ... 14

4. Impact of the Project & Evaluation .. 31

5. Testing ... 33

6.Conclusion .. 35

2

1. Introduction

Identifying and executing a successful graduation project is a crucial milestone for the future

careers of all senior students. With this in mind, we, a group of four friends united by our shared

work ethics, principles, and vision, embarked on a journey to create a meaningful project that

could make a significant impact. Our extensive discussions and research led us to a stark

realization: the devastating earthquake that struck on February 6 exposed severe shortcomings

in the organization and management of search and rescue operations, resulting in a tragic loss

of life.

Motivated by this tragedy and the urgent need for better-coordinated emergency responses, we

decided to develop the Search and Rescue Operation Portal (SAROP). SAROP is designed to

address the inefficiencies observed during disaster response efforts, providing search and rescue

teams with a powerful tool to manage their operations more effectively.

Our portal offers a secure authentication system, ensuring that only authorized team members

can access sensitive information. Once logged in, users can enter new operations, update

existing ones, and view current operations. Additionally, SAROP enables teams to drawing

notes and polygons on maps and viewing them. It also allows users to switch between different

maps. They can also see their location and search a specific location on map.

The backend of SAROP is developed using Java Spring Boot, ensuring a robust and scalable

infrastructure. We utilize PostgreSQL for our database management, leveraging its powerful

capabilities to store and retrieve the necessary data efficiently. The frontend is implemented

using HTML, CSS, and JavaScript, providing a responsive and user-friendly interface that

ensures ease of use for all team members. Additionally, we developed a mobile application

using Flutter, enabling field users to access the system via their mobile devices, even in remote

locations.

By integrating these features, SAROP aims to streamline the management of search and rescue

operations, ultimately minimizing the damage caused by natural disasters and enhancing the

efficiency of response teams. This project represents our collective effort to contribute to

disaster management and serves as a testament to our commitment to leveraging technology for

the greater good. We believe that SAROP will play a vital role in improving the coordination

and effectiveness of search and rescue operations, potentially saving lives and reducing the

impact of future catastrophes.

3

1.1 Description

The Search and Rescue Operation Portal (SAROP) is a comprehensive tool designed to enhance

the efficiency and effectiveness of search and rescue teams. The portal's primary features

include:

• Authentication System: Ensures that only authorized team members can access the

portal, providing security and data privacy.

• Operation Management: Allows team members to enter new operations, update

ongoing ones, and view current operations, facilitating better coordination and resource

allocation.

• Polygon and Tracking: Enables teams to track different polygons on the map, aiding

in the planning and execution of search and rescue missions.

• User and Team Management: Allows to manage the CRUD operations of users and

teams of search and rescue teams

• Mobile Application: Developed using Flutter, the mobile application allows field users

to access SAROP functionalities on their mobile devices, ensuring accessibility in

remote areas.

The backend of SAROP is built using Java Spring Boot, and it interacts with a PostgreSQL

database to manage and retrieve data efficiently. The frontend, created with HTML, CSS, and

JavaScript, offers a user-friendly interface that facilitates easy navigation and usage.

1.2 Constraints

The development and implementation of SAROP are subject to several constraints:

• Technical Constraints: Ensuring compatibility across various devices and operating

systems, along with reliable offline functionality.

• Data Privacy: Protecting sensitive information through robust encryption and secure

authentication mechanisms.

• Resource Allocation: Efficient use of server capacity and database management to

ensure system reliability and performance.

• User Training: Providing adequate training to search and rescue teams to ensure

effective use of the portal.

• Regulatory Compliance: Adhering to relevant data protection and privacy laws to

maintain legal and ethical standards.

4

1.3 Professional and Ethical Issues

Developing SAROP involves several professional and ethical considerations:

• Data Security and Privacy: Ensuring that sensitive information, such as operation

details and personal data of team members, is securely stored and transmitted.

Implementing strong encryption methods and secure authentication processes addresses

these concerns.

• Accuracy and Reliability: Providing accurate and reliable information to avoid

misguiding search and rescue efforts. Rigorous testing and validation are essential to

ensure data integrity.

• User Accessibility: Making the system accessible to all users, including those with

disabilities, by implementing features that comply with accessibility standards.

• Transparency and Accountability: Maintaining transparent communication about the

system's capabilities and limitations to manage user expectations, along with

establishing accountability mechanisms to address any issues that arise during use.

• Ethical Use of Technology: Ensuring the portal is used ethically and responsibly,

respecting user privacy, avoiding misuse of data, and ensuring the technology serves its

intended purpose of improving disaster response efforts.

By addressing these professional and ethical issues, we aim to create a reliable, secure, and

effective tool that significantly enhances the capabilities of search and rescue teams, ultimately

contributing to saving lives and reducing the impact of natural disasters.

5

2. System Requirements

The software requirements for our project includes several essential components to ensure

good functionality and efficient performance. On the backend, we have used Java 17 and

Spring Boot 3 to build the core application. For database management, PostgreSQL version

14 or above is used, providing a reliable and scalable solution for data storage. Geoserver

version 2.25 is used for processing and serving spatial data. Development on the backend is

handled using IntelliJ IDEA. On the frontend, we have used HTML, CSS, and JavaScript to

create an interactive user interface, integrating Leaflet for spatial data operations.

Additionally, the mobile application is developed using Flutter, with flutter_map used for map

integration.

2.1 Features of Project

Our project have several features with different entities. You can see the features of the project

at the below:

• Authentication and Role Management

o Allowing users to register with their name, email and password.

o Allowing users to login with their email and password.

o Password of users is stored in the database by encoding the password.

o The access of users is enabled with access token which is created using jwt

tokens.

o Enabling users to do several operations based on their roles.

• User Management:

o Create, read, update, and delete (CRUD) operations for users.

o Assigning each user to a specific team.

o Assigning specific roles to each user such as Operation admin, admin and user

• Team Management:

o CRUD operations for team entities.

o Assign team members as users and assigning multiple locations to each team.

• Category Management

o CRUD operations for category entities.

• Team Location Management:

o CRUD operations for team location entities.

6

• Operation Management:

o CRUD operations for operation entities.

o Assigning a team to an operation

o Assigning a category to an operation

o Linking with multiple maps

• Spatial Data Processing:

o Integrate Geoserver for serving spatial data.

o Use Leaflet to visualize and interact with maps on the frontend.

o Adding notes and polygons on the map using leaflet libraries.

o Seeing the location of ourselves on the map.

o Switching between the maps such as open street map and the map which is

uploaded

• Mobile Application:

o Authentication with email and password.

o Integrate spatial data visualization and interaction using flutter_map.

7

3. Architecture

3.1 Architecture in Backend

The backend architecture of our project is organized into a modular structure to promote

maintainability, scalability, and ease of development. The core of the backend is built using

Java 17 and Spring Boot 3, following a clean and well-organized package structure.

1. Root Package: com.sarop.saropbackend

• This is the base package containing all the sub-packages and classes necessary for

the application.

2. Sub-packages:

• authentication: Handles authentication logic, including login, registration, and

token management.

• category: Manages the CRUD operations related to categories.

• common: Contains common utility classes and shared resources used across various

modules.

• config: Contains configuration classes for setting up application properties, security

configurations, and other Spring Boot configurations.

• note: Handles operations related to notes on specific locations on map.

• operation: Manages CRUD operations of operations as well as linking them with

categories, teams, and spatial data.

• polygon: Manages spatial data and operations related to polygons, likely

representing areas on a map.

• restapi: Provides REST API endpoints for external communication with geoserver

• team: Manages team-related operations, including CRUD operations and team

management functionalities.

• teamLocation: Manages CRUD operations for team locations.

8

3. Inside of packages

• controller: Contains controllers which handle HTTP requests related to operations

for the specific entity.

• dto: Contains Data Transfer Objects (DTOs) used for transferring data between the

client and server. This includes request and response objects.

• model: Defines the models which represent the database entities.

• repository: Contains repository, which extends Spring Data JPA repositories to

perform CRUD operations on user entities.

• service: Contains the service layer, including interfaces and implementations which

encapsulate the business logic related to models.

Besides we have several relations between the entities in our project.

• User and Team:

• A User belongs to one Team (ManyToOne relationship).

• A Team has one User as the teamLeader (OneToOne relationship).

• A Team has many Users as members (OneToMany relationship).

• Team and TeamLocation:

• A TeamLocation belongs to one Team (ManyToOne relationship).

• A Team has many TeamLocations (OneToMany relationship).

• Team and Operation:

• An Operation belongs to one Team (ManyToOne relationship).

• A Team has many Operations (OneToMany relationship).

• Operation and Category:

• An Operation belongs to one Category (ManyToOne relationship).

• A Category has many Operations (OneToMany relationship).

9

• Operation and Map:

• An Operation can have many Maps (ManyToMany relationship with join table).

• A Map can be linked to many Operations (ManyToMany relationship with join

table).

• Map and Workspace:

• A Map belongs to one Workspace (ManyToOne relationship).

• A Workspace has many Maps (OneToMany relationship).

• Map and Note:

• A Note belongs to one Map (ManyToOne relationship).

• A Map has many Notes (OneToMany relationship).

• Map and Polygon:

• A Polygon belongs to one Map (ManyToOne relationship).

• A Map has many Polygons (OneToMany relationship).

• Note and User:

• A Note belongs to one User (ManyToOne relationship).

• A User has many Notes (OneToMany relationship).

• Note and Coordinate:

• A Note has one Coordinate (OneToOne relationship).

• Polygon and Coordinate:

• A Polygon has many Coordinates (OneToMany relationship).

10

3.2 Architecture and design in Mobile

General Architecture of Mobile Application

We are utilizing Flutter to construct our mobile app. Google created the Flutter UI toolkit, which

enables developers to create native apps for the iOS and Android operating systems. According

to customer’s request in mobile application users just getting the maps, notes, polygons from

backend and geoserver. There is no update, post process in the mobile application except

register and login.Our program is divided into three primary modules:

Authentication Module: Includes pages for registration and login where users can sign in or

make new accounts. Our API is used in interaction with this module.

Workspace Module: Users can choose from a variety of workplaces and see the maps

associated with them in this module. Workspace and map viewing is geoserver based. The

flutter application and geoserver are mediated by the API.

Map Module: This module allows user to see the maps of the workspace that user has selected,

toggling between Google Maps and the presented map, and displaying notes and polygons on

the screen. This uses geoserver-based processing for map presentation. The flutter application

and geoserver are mediated using an API.

API Integration

Our mobile application uses a RESTful API to interface with the backend, Spring Boot. Secure

HTTPS transmission of data, including workspace and layer selections, user login and

registration details, is made to the backend. The responses are sent back to the mobile

application by the backend once the required tasks have been completed. The data security and

application reliability are enhanced by this arrangement.

Map Integration

Our program integrates GeoServer with its map functions. A platform called GeoServer is used

to maintain and display maps and geographic data. Google Maps and ECW format maps are

dynamically loaded and shown based on user requirements. GeoServer and the backend are

used to record and handle operations like notes and polygons drawn on the map.

11

Design of Mobile Application

1. Welcoming-Login-Register Pages

The welcome page is the first screen we encounter when we launch our mobile application. A

map that was retrieved from a map server is visible behind this screen. We included this function

in order to comply with the Apple Store's mandate that certain features must be accessible

without logging in.

We can go between the two pages of this screen by pressing the login or register button, which

brings up a registration/login screen. Users have the option to register on this screen. After the

admin gives their approval, their registration data is transmitted to the backend, and they may

use authentication to log in via the login screen. The API serves as the link between all of these

activities.

Page 1
Page 3 Page 2

12

2. Choose Your Map Page

Users can examine the registered workspaces in the database and choose a map from the

appropriate workspace on this page. Through REST API, all of these processes are coordinated

between GeoServer and the backend. Users are redirected to a new screen upon picking a

workspace and its associated map and pressing the submit button.

Page 4 Page 5 Page 6

13

3. Get Your Map Page

Page 7 Page 8

The map that was chosen and uploaded on the "choose your map" page is retrieved from

GeoServer via a REST API and shown in the mobile application using FlutterMap on this new

screen. This screen also shows notes that are currently open and polygons that the administrator

has drawn on our website during this procedure. There is also an option to switch to

OpenStreetMap on this screen. Users have the option to always remain on the ECW map or to

always switch to OpenStreetMap.

14

3.3Architecture and design on Frontend

The frontend of our project was developed using HTML, CSS, and JavaScript, with the

additional integration of Bootstrap 5 to ensure a responsive and visually appealing user

interface.

Technologies Used

• HTML, CSS, JavaScript: The core technologies used to structure, style, and add

interactivity to the web pages.

• Bootstrap 5: Utilized for its extensive prebuilt components and responsive grid system,

which helped in creating a modern and consistent design across the application.

• Leaflet.js: Used for advanced mapping functionalities, providing an interactive map

interface with extensive customization.

Functionalities Implemented

• AJAX Operations: JavaScript was employed to handle asynchronous HTTP requests

using GET, POST, and DELETE methods. These operations enabled seamless

interaction with the backend, allowing for the retrieval, submission, and deletion of data

without requiring page reloads.

• User and Admin Views: The frontend dynamically adjusts the visible content based on

the user type (admin or standard user). While the admin has access to all pages, standard

users have restricted access, excluding admin-specific functionalities.

o Admin-Specific Functionalities:

▪ Category List: Allows admins to manage categories within the

application.

▪ Team Location List: Enables admins to view and manage the locations

of various teams.

▪ Team List: Provides admins with an overview and management options

for different teams.

▪ User List: Facilitates the management of user accounts by the admin.

15

o Shared Functionalities:

▪ Profile Details: Users and admin can view their profile information.

▪ Map: Operation admins and admin can add operations to the calendar

based on the map data. Users, operation admins and admins can add

notes and polygons as well as viewing and deleting them.

▪ Calendar: Operation admins and admin can add operations to the

calendar, linked to specific locations on the map, facilitating organized

and efficient operation planning.

User Authentication

• Sign In/Sign Out/Sign Up Pages: These pages handle user authentication, allowing

users to create accounts, sign in, and sign out securely.

16

My Profile Page

• The My Profile page allows users to view and update their personal information. The

details displayed on the profile page include:

o Full Name

o Email

o Role

o Team Name

17

Workspace and Layer Management

Before accessing the map page, users can interact with the Map List page where they can

manage their workspaces and layers:

• Workspace Management: Users can view existing workspaces, add new workspaces

by required workspace name input, and delete existing ones.

o Add Workspace: Users can add a new workspace by clicking the "Add

Workspace" button and providing a Workspace Name (required).

18

• Layer Management: Within each workspace, users can view the details of layers,

including layer name, layer type, and layer description. They can also add new layers,

delete layers, and use the view button to navigate to the map page with the selected layer

and workspace.

o Add Layer: Users can add a new layer by clicking the "Add Layer" button and

providing the following required information:

▪ Layer Name (required)

▪ Layer Description (required)

19

▪ File Drop (required): Allows uploading one file of types tif, tiff, ecw, jpg,

jpeg only.

Map Integration

• Leaflet.js: For the mapping functionalities, Leaflet.js was integrated and customized to

fit our specific requirements. This included adapting functionalities such as note adding

and polygon drawing (including measurements) to integrate seamlessly with our UI,

allowing users to:

o Zoom In/Out: Easily adjust the map view.

o Fullscreen Mode: Switch to a full screen map view.

20

o Printing Options: Print the map with various options such as portrait,

landscape, auto, and custom settings.

o Layer Control: Toggle between different map layers.

o Scale Display: View the scale of distances on the map.

o Note Markers: Add, remove, and toggle visibility of note markers, customized

to fit our specific UI requirements.

o Live Location Tracking: Show the live location of the logged-in user.

o Polygon Tools: Measure distances and areas on the map, with options to save or

delete these measurements as polygon.

These tools were adapted for our custom UI.

Calendar Integration

• Operation Scheduling: Users and admins can add, delete and view operations to the

calendar, facilitating organized and efficient operation planning. The add operation

button include:

o Operation Number (required)

o Operation Name (required)

o Operation Category

21

o Operation Team Name

o Operation Date (required)

o Operation Time

o Map Selection

Admin Pages:

• Category List: Allows admin to view the details of categories, including category

name. Admin can also add new categories, delete categories, and use the update button

to update selected category.

o Add Category: Admin can add a new category by clicking the "Add Category"

button and providing the following required information:

22

▪ Category Name (required)

o Update Category: Admin can update existing category by clicking the

"Update" button and providing the following required information:

▪ Category Name (required)

23

• Team Location List: Allows admin to view the details of team locations, including

name, province name, province code, addresses, latitude, longitude, and phone number.

Admin can also add new team location, delete team locations, and use the update button

to update selected team location.

o Add Team Location: Admin can add a new team location by clicking the "Add

Team Location" button and providing the following required information:

▪ Name (required)

▪ Province Name (required)

▪ Province Code (required)

▪ Address (required)

▪ Latitude (required)

▪ Longitude (required)

▪ Description

▪ Phone Number (required)

▪ Second Phone Number

▪ Third Phone Number

▪ Fax Number

24

o Update Team Location: Admin can update existing team location by clicking

the "Update" button and providing the following required information:

▪ Name (required)

▪ Province Name (required)

▪ Province Code (required)

▪ Address (required)

▪ Latitude (required)

▪ Longitude (required)

▪ Description

▪ Phone Number

▪ Second Phone Number

▪ Third Phone Number

▪ Fax Number

25

26

• Team List: Allows admin view the details of team, including name, foundation year,

province code, province name, team leader email, phone description. Admin can also

add new team, delete team, and use the update button to update selected team.

o Add Team: Admin can add a new team by clicking the "Add Team" button and

providing the following required information:

▪ Team Name (required)

▪ Foundation Year (required)

▪ Province Code (required)

▪ Province Name (required)

▪ Team Leader

▪ Phone Description (required)

▪ Team Locations

▪ Users

o Update Team: Admin can update existing team by clicking the "Update" button

and providing the following required information:

▪ Team Name (required)

▪ Foundation Year (required)

▪ Province Code (required)

▪ Province Name (required)

▪ Team Leader

▪ Phone Description (required)

▪ Team Locations

▪ Users

27

28

• User List: Allows admin to view the details of users, including name, role, status, team

name. Admin can also add new user, delete user, and use the update button to update

selected user. Also use the “NonVerified List” button to navigate to the NonVerified List

page.

o Add Team: Admin can add a new user by clicking the "Add User" button and

providing the following required information:

▪ Full Name (required)

▪ Email (required)

▪ Password (required)

▪ Role (required)

▪ Team

o Update Team: Admin can update existing user by clicking the "Update" button

and providing the following required information:

▪ Full Name (required)

▪ Email (required)

▪ Password (required)

▪ Role (required)

▪ Team

29

30

• NonVerified Users List: Allows admin to view the nonverified list of users, including

name, role, status, team name. Admin can also verify the user by clicking “Verify”

button. In this way, the verified user is deleted from the nonverified list and the users

list is passed.

Overall, the frontend architecture was designed to be robust, interactive, and user-friendly,

catering to the needs of both regular users and admins, and significantly aiding in search and

rescue operations through advanced mapping and scheduling functionalities.

31

4. Impact of the Project & Evaluation

The Search and Rescue Operation Portal (SAROP) has the potential to significantly improve

the efficiency and effectiveness of search and rescue operations, especially in disaster-prone

areas like Turkey. The key impacts of the project include:

• Enhanced Coordination: By providing a centralized platform for managing

operations, SAROP enhances the coordination among search and rescue teams. This

leads to more organized and effective responses to disasters.

• Improved Resource Allocation: The ability to track paths and allocate teams to

specific regions ensures that resources are used optimally, increasing the chances of

successful rescue missions.

• Data Security and Privacy: With robust authentication and encryption mechanisms,

SAROP ensures that sensitive information is protected, maintaining the privacy and

security of the data.

• User-Friendly Interface: The implementation using HTML, CSS, and JavaScript

provides a responsive and intuitive interface, making it easy for team members to use

the portal effectively.

• Real-Time Updates: The integration with PostgreSQL and Java Spring Boot allows for

real-time updates and access to the latest information, which is vital during critical

rescue operations.

• Mobile Accessibility: The mobile application developed with Flutter ensures that field

users can access SAROP functionalities on the go, enhancing the flexibility and reach

of the portal.

Evaluation

The evaluation of SAROP will be conducted through a series of tests and feedback sessions

with actual search and rescue teams. The evaluation process includes:

32

• Usability Testing: Conducting usability tests to ensure that the portal is user-friendly

and meets the needs of the team members. This includes testing the navigation, ease of

operation entry, and map tracking features.

• Performance Testing: Assessing the performance of the portal under various

conditions, including high traffic scenarios and offline mode. This helps in identifying

any bottlenecks and ensuring that the system can handle the demands of real-world

operations.

• Security Testing: Implementing security tests to ensure that the authentication and

encryption mechanisms are robust and that the data is protected from unauthorized

access.

• Feedback Integration: Collecting feedback from the users and incorporating their

suggestions and improvements into the system. This iterative process ensures that

SAROP evolves to meet the changing needs of search and rescue operations.

• Impact Assessment: Measuring the impact of SAROP on the efficiency and

effectiveness of search and rescue operations. This includes tracking key metrics such

as response time, success rates, and user satisfaction.

By conducting a thorough evaluation and continuously improving the system based on user

feedback, we aim to ensure that SAROP becomes an indispensable tool for search and rescue

teams, ultimately contributing to saving lives and reducing the impact of natural disasters.

For also future of SAROP, we aim to publish it on the Github and adding several features with

new contributors. We plan of implementing features such as GPS tracking on maps, notification

mechanism between the teams, users and operations, creating a role management system with

permissions and creating different maps for each operation so that operations can be managed

with maps in a more effective way.

33

5. Testing

TEST PERFORMED

MEMBER

PASSED/FAILED/FUTURE

TEST

BACKEND- Authorization

tests(Register/Login)

Mert Çıkla PASSED

BACKEND- Team Location

endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Team

Endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Map

Endpoints(Create/Read/Delete)

Mert Çıkla PASSED

BACKEND- Geoserver Post/Delete Relation Mert Çıkla PASSED

BACKEND- BACKEND- Polygon

Endpoints(Create/Read/Delete)

Mert Çıkla PASSED

BACKEND- Note

Endpoints(Create/Read/Delete)

Mert Çıkla PASSED

BACKEND- Operation

Endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Category

Endpoints(Create/Read/Update/Delete)

Mert Çıkla PASSED

BACKEND- Exception Handling – Crashing

case when there is an error

Mert Çıkla PASSED

BACKEND -Exception Handling – Error

messages

Mert Çıkla Future Test

BACKEND- Loading Data From API Mert Çıkla PASSED

BACKEND- Performance test while loading

data from API

Mert Çıkla FAILED

BACKEND- Performance test for the relation

with Geoserver API

Mert Çıkla PASSED

MOBILE- User Authentication and

Registration Arda Gök Passed

MOBILE- Registration screen works properly Arda Gök Passed

MOBILE Login with valid credentials Arda Gök Passed

MOBILE- Display of appropriate error

messages Arda Gök Passed

MOBILE - Data security during

registration/login Arda Gök Passed

MOBILE- Utilization of API Read function Arda Gök Passed

MOBILE- Proper handling of authentication Arda Gök Passed

MOBILE- Interaction between frontend and

backend Arda Gök Passed

MOBILE- Accuracy of dropdown menu data

fetching Arda Gök Passed

MOBILE- Data security during

registration/login Arda Gök Passed

MOBILE- Display of appropriate error

messages Arda Gök Passed

34

MOBILE- Proper response to incorrect

requests Arda Gök Passed

MOBILE- API's response to errors and

failures Arda Gök Passed

MOBILE- Usability of the user interface Arda Gök Passed

MOBILE- Smooth operation of all features Arda Gök FAILED

MOBILE- Easy navigation and execution of

actions Arda Gök Passed

MOBILE- Accurate and quick map rendering Arda Gök FAILED(NOT QUICK)

MOBILE- Selection and visualization

capabilities Arda Gök Passed

MOBILE- Functionality of each frontend

component Arda Gök Passed

MOBILE- Response to user interactions Arda Gök Passed

MOBILE- Validation of error messages Arda Gök Passed

MOBILE- End-to-end user flow validation Arda Gök Passed

FRONTEND- User Authentication and

Registration Ceren Özdoğan Passed

FRONTEND- Role-Based Access Control

Validation Ceren Özdoğan Passed

FRONTEND- Interactive Map Display and

Controls Nursu Baltacı Passed

FRONTEND- Map Marker Placement and

Path Drawing Nursu Baltacı Future Test

FRONTEND- Operation Management

Functions Nursu Baltacı Passed

FRONTEND- Real-Time Updates and

Notifications Ceren Özdoğan Passed

FRONTEND- Cross-Browser Compatibility Ceren Özdoğan

Passed - Tested on Chrome,

Firefox, Safari

FRONTEND- Responsive Design on Various

Devices Ceren Özdoğan

Passed- Includes tests on

desktops,tablets,smartphones

FRONTEND- User Interface Consistency Ceren Özdoğan Passed

FRONTEND- Accessibility Compliance

Testing Ceren Özdoğan Future Test

FRONTEND- Security Measures for User

Data Nursu Baltacı Passed

FRONTEND- Error Message Handling Nursu Baltacı Passed

FRONTEND- Session Management Testing Nursu Baltacı Passed

FRONTEND-Load Times and Performance

Optimization Nursu Baltacı

Failed - Needs optimization for

faster load times

FRONTEND-Usability Testing Ceren Özdoğan

Passed- Scheduled to gather user

feedback on interface usability

35

6.Conclusion

Creating the Search and Rescue Operation Portal (SAROP) has been a difficult but worthwhile

project. The sad events of the February 6 earthquake brought to light the urgent need for

improved search and rescue operations administration and coordination, which served as the

impetus for this project. In order to meet these objectives, SAROP offers a strong, user-friendly

platform that improves the efficacy and efficiency of disaster response initiatives.

We have effectively combined several technologies throughout this project to produce an all-

inclusive solution for search and rescue units. The backend, which was created with PostgreSQL

and Java Spring Boot, guarantees a dependable and scalable architecture. The Flutter-

developed mobile application increases the system's accessibility for field users, while the

HTML, CSS, and JavaScript-implemented frontend offers an easy-to-use interface.

Our comprehensive testing and assessment procedures have shown that SAROP has the ability

to greatly enhance the administration of search and rescue operations. During crucial rescue

missions, the platform's features—like secure authentication, real-time updates, and advanced

mapping capabilities—allow for better coordination and resource allocation. The system as a

whole has shown to be dependable and efficient.

SAROP, in summary, is a major advancement in the use of technology for disaster relief. Our

dedication to incorporating user feedback and making constant improvements will guarantee

that SAROP continues to be an essential tool for search and rescue teams, ultimately helping to

save lives and lessen the effects of calamities in the future.

